DOI:10.1111/j.1476-5381.2010.01038.x www.brjpharmacol.org

RESEARCH PAPER

Anti-inflammatory effects of the anticonvulsant drug levetiracetam on electrophysiological properties of astroglia are mediated via TGF\$1 regulation

Martin N Stienen^{1*}, Aiden Haghikia^{2*}, Hannes Dambach¹, Jan Thöne², Martin Wiemann⁴, Ralf Gold², Andrew Chan², Rolf Dermietzel¹, Pedro M. Faustmann¹, Daniel Hinkerohe^{3†} and Nora Prochnow^{1†}

¹Institute of Neuroanatomy, Ruhr-University, Bochum, Bochum, Germany, ²Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany, ³Department of Neurology, Ruhr-University Bochum, Knappschafts-Krankenhaus, Bochum, Germany, and ⁴Department of Physiology, University of Duisburg-Essen, Essen, Germany

Correspondence

Nora Prochnow, Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, MA6/47; Universitätsstrasse 150, D-44780 Bochum, Germany. E-mail: nora.prochnow@rub.de

*Equal contribution as first authors.
†Equal contribution as senior authors.
Mail contacts:
martin.stienen@rub.de,
aiden.haghikia@rub.de,
hannes.dambach@rub.de,
Jan_Thoene@gmx.de,
martin.wiemann@uni-due.de,
ralf.gold@rub.de,
andrew.chan@rub.de,
rolf.dermietzel@rub.de,
hinkerohe2@freenet.de,
nora.prochnow@rub.de

Keywords

astrocytes; epilepsy; microglia; neuroinflammation; connexin 43; pH; cytokines; levetiracetam

Received

13 April 2010

Revised

29 August 2010

Accepted

2 September 2010

BACKGROUND AND PURPOSE

The involvement of astrocytes as immune-competent players in inflammation and the pathogenesis of epilepsy and seizure-induced brain damage has recently been recognized. In clinical trials and practice, levetiracetam (LEV) has proven to be an effective antiepileptic drug (AED) in various forms of epileptic seizures, when applied as mono- or added therapy. Little is known about the mechanism(s) of action of LEV. Evidence so far suggests a mode of action different from that of classical AEDs. We have shown that LEV restored functional gap junction coupling and basic membrane properties in an astrocytic inflammatory model *in vitro*.

EXPERIMENTAL APPROACH

Here, we used neonatal rat astrocytes co-cultured with high proportions (30%) of activated microglia or treated with the pro-inflammatory cytokine interleukin- 1β to provoke inflammatory responses. Effects of LEV (50 μ g·mL⁻¹) on electrophysiological properties of astrocytes (by whole cell patch clamp) and on secretion of TGF β 1 (by ELISA) were studied in these co-cultures.

KEY RESULTS

LEV restored impaired astrocyte membrane resting potentials via modification of inward and outward rectifier currents, and promoted TGF β 1 expression in inflammatory and control co-cultures. Furthermore, LEV and TGF β 1 exhibited similar facilitating effects on the generation of astrocyte voltage-gated currents in inflammatory co-cultures and the effects of LEV were prevented by antibody to TGF β 1.

CONCLUSIONS AND IMPLICATIONS

Our data suggest that LEV is likely to reduce the harmful spread of excitation elicited by seizure events within the astro-glial functional syncytium, with stabilizing consequences for neuronal–glial interactions.

Abbreviations

ACSF, artificial cerebrospinal fluid; AED, anti-epileptic drug; CARAT, Copy Number Analysis with Regression and Tree; CSF, cerebrospinal fluid; Cx43, connexin 43; GFAP, glial fibrillary acidic protein; IFN- β , interferon β ; IL1- β , interleukin-1 β ; M5, astrocytes co-cultured with an amount of 5% activated microglia; M30, astrocytes co-cultured with an amount of 30% activated microglia; MRP, membrane resting potential; PBS, phosphate-buffered saline; pHi, intracellular pH; RRT, resting ramified type; RPT, round phagocytic type; TGF β 1, transforming growth factor β 1; TNF α , tumour necrosis factor α

Introduction

Recent studies provide ample evidence of a glial component in the initiation and persistence of inflammatory processes in brain tissues. Astrocytes and microglia, as resident immune effector cells (Nelson et al., 2002; Kim and de Vellis, 2005; Pivneva, 2008), have also frequently been suggested to be involved in the pathogenesis of epilepsy (Tian et al., 2005; Vezzani and Granata, 2005; Seifert et al., 2006; Jabs et al., 2008; Wetherington et al., 2008). Until recently, neurons, as the functional substrate of seizure generation, have received most of the attention in biomedical research. The renaissance of glia, in particular their contribution to neural activity in the form of checkpoints for the regulation of local neurotransmitter-, ion- and immune-homeostasis has fostered the concept of a glial component in epileptogenesis (Tian et al., 2005; Choi and Friedman, 2009; Witcher et al., 2010). This concept has been attributed to the ability of astrocytes to build a functional syncytium mediated by gap junctions (Soroceanu et al., 2001; Meme et al., 2006; Retamal et al., 2007) which in astrocytes is basically constituted by connexins (Cx)43 and 30 (Dermietzel et al., 1991; Giaume et al., 1991; Kunzelmann et al., 1999). Gap junction coupling allows astrocytes to distribute potentially neurotoxic metabolites, mainly extracted from the synaptic clefts within the glial syncytium or to discharge them into the blood vessels (Volterra and Meldolesi, 2005). In order to perform bilateral interactions with local and peripheral immune effector cells, astrocytes employ and react to pro- and anti-inflammatory cytokines as signaling molecules (Turrin and Rivest, 2004; Vezzani et al., 2008).

Earlier, we and others have shown the influence of some cytokines, among them endothelial tumour necrosis factor alpha, Interleukin-1 β (IL-1 β), interferon β (IFN β) and transforming growth factor β (TGF- β) on astrocytic gap junctional coupling, suggesting a contribution of glial gap junctions to inflammatory processes (Rouach *et al.*, 2002; Faustmann *et al.*, 2003; Hinkerohe *et al.*, 2005; Haghikia *et al.*, 2008; Hinkerohe *et al.*, 2010). In patients with recent generalized convulsions, acute inflammatory reactions following seizures have been suggested due to clinical observation of aseptic pleocytosis and

increase of inflammatory cytokines in the CSF (Peltola et al., 2002; Avignone et al., 2008; Choi and Friedman, 2009). The contribution of the cellular and humoral immune system, including the activation of microglia and astrocytes (Bauer et al., 2007), production of pro-inflammatory cytokines (De Simoni et al., 2000; Vezzani et al., 2000; Jankowsky and Patterson, 2001; Gorter et al., 2006; Rao et al., 2008; Riazi et al., 2008) and related molecules to the pathogenesis of seizures (Peltola et al., 2000) have been described in epilepsy as well as in experimental models of epilepsy. As a major inflammatory mediator, IL-1β has been shown to exert a proconvulsive impact by itself and to alter neuronal network excitability in several rodent forebrain regions, while its endogenous receptor antagonist (IL-1βRa) inhibited seizures (Vezzani et al., 1999; 2000; De Simoni et al., 2000).

The $[S]-\alpha$ ethyl-2-oxo-1-pyrrolidine acetamide [levetiracetam (LEV)] is a clinically established antiepileptic drug (AED) and has proven to be effective in the prevention of various forms of epilepsy. On the neuronal level, there is some evidence of the antiepileptic mechanisms used by LEV, that is, kindling-induced alterations in gene expression in the temporal lobe of rats were modified by LEV (Gu et al., 2004). Furthermore, intracellular pH (pHi) modulation via inhibition of Na+-dependent Cl-/ HCO₃⁻ exchange was described in adult hippocampal CA3 neurons of the guinea-pig (Leniger et al., 2004). However, GABAergic currents were not influenced by LEV in a paired-pulse study of field potentials (Margineanu and Klitgaard, 2003) and LEV also failed to block voltage-gated Na+ and low voltageactivated Ca2+ currents as well as NMDA receptors (Zona et al., 2001; Gorji et al., 2002). There was an incomplete inhibition of voltage-operated K⁺ currents (Madeja et al., 2003) and N-type Ca2+ channels of hippocampal CA1 neurons whose high-voltageactivated calcium currents were reduced by about 20% (Lukyanetz et al., 2002). Thus, although its anti-convulsive properties have been approved for more than 10 years, the exact mechanism of action of LEV in brain tissues remains to be clearly defined.

Using an *in vitro* approach, we have shown that LEV restored the functional astrocytic syncytium, when disrupted by inflammatory conditions

(Haghikia *et al.*, 2008). This effect was comparable with the ability of the anti-inflammatory cytokine TGFβ1 to restore functional properties of astroglia after an induced inflammatory response (Hinkerohe *et al.*, 2005). The aim of our present study was to gain a better mechanistic understanding of the previously observed effects of LEV on the astroglial syncytium under inflammatory conditions.

Methods

Cell Culture

All animal care and experimental procedures were carried out according to the guidelines of the German Animal Protection Law in its present version (1998) and in accordance with the European Communities Council Directive of 24 November 1986 (86/609/EEC). Efforts were made to reduce the number of animals to a minimum. All experiments were performed on animals bred in the Institute of Neuroanatomy and Molecular Brain Research of the Ruhr-University Bochum (Germany). Primary cell cultures of glial cells were prepared from brain hemispheres of post-natal (P0–P2) Wistar rats as described by Dermietzel *et al.* (1991).

After careful removal of the meninges and the choroid plexuses, the brain tissue was stored in phosphate-buffered saline (PBS) containing 0.1% trypsin (Invitrogen, Karlsruhe, Germany) at 37°C, washed with Dulbecco's minimal essential medium (DMEM) with 1% glucose containing 10% fetal calf serum, followed by a 5 min incubation with 1% DNAse I (bovine pancreas; Serva, Heidelberg, Germany) in PBS at room temperature.

After blocking enzyme activity, whole brain tissues were diluted and dispersed in culture medium [DMEM, 10% fetal calf serum, 1% nonessential amino acids (Invitrogen), penicillin (50 µg⋅mL⁻¹), streptomycin (50 μg·mL⁻¹), and glutamine (2 mM)] by trituration with a pipette and subsequent passage through a 60 µm nylon mesh. Cells were first plated at a density of two brains per culture flask (Becton Dickinson, Heidelberg, Germany). Cultures were maintained in a 5% CO2, 95% air atmosphere at 37°C and nearly 100% relative humidity. After 4–5 days in DMEM culture medium, the astroglial cell layer achieved confluency. Co-cultures were further removed from the culture dishes by trypsin-EDTA (0.1%) treatment and passaged onto poly-L-lysinecoated glass coverslips (12 mm²), reaching a density of 40.000–50.000 cells per coverslip. A confluent monolayer was again achieved 2-3 days after the passaging of the co-cultures onto glass coverslips. Non-adjacent microglial cells and oligodendroglia, which are conveniently found to grow on top of the

astrocytes, were isolated and removed from the culture by shaking the flasks manually. The fraction of microglial cells remaining in the co-cultures can be altered by the extent of shaking. Here, we have used concentrations of microglia of 5% (M5; concentrations equivalent to healthy brains) and of 30% (M30; representing inflammatory conditions).

Before the ELISA and electrophysiology procedures, single co-culture samples were analysed for the fraction of activated and non-activated microglia by double immunocytochemistry using anti-ED1 and anti-glial fibrillary acidic protein (GFAP) antibodies (see next). Cells were used for experiments after a total of 6–8 days after brain preparation.

Immunocytochemistry and quantification of microglia

The proportion of activated microglia was quantified in all experiments using combined immunocytochemistry against ED1 and GFAP according to Faustmann et al. (2003). GFAP was detected using a polyclonal antibody (1:100; Sigma G9269, Taufkirchen, Germany). Microglial cells were labelled by applying a monoclonal antibody to the ED1 marker (1:250; Serotec MCA 341R, Eching, Germany) (Dijkstra et al., 1985; Polman et al., 1986). For quantification of the microglial fraction, immunocytochemically labelled cells were counterstained with 4,6-diamidino-2-phenyl-indol (DAPI; 1:2500; Sigma D 9542) to visualize nuclei. After three additional washes with PBS, the coverslips were embedded in ProLong antifade kit (Molecular Probes, Leiden, the Netherlands) and subjected to immunofluorescence microscopy with an Axiovert 35 microscope (Zeiss, Jena, Germany). The ratio of microglia to astrocytes was determined by comparing the number of ED1-stained microglia with the total number of DAPI-labelled cells by two independent examiners. Co-cultures containing a ratio of approximately 5 and 30% of microglia (termed M5 and M30) were determined in five independent experiments. Subpopulations of microglia were differentiated by visually counting 50-100 microglial cells for each experiment at a primary magnification of 40×.

Ratios were expressed as percentage of each subpopulation in the entire microglial cell population. The significance of differences between the median of the three microglial subpopulations (Figure 1) in the M5 and M30 co-cultures was tested using the Mann–Whitney test.

Electrophysiology

Membrane resting potentials (MRP) and astrocytic transmembrane currents were assessed by whole cell patch clamp recordings. Cells on a cover slip were transferred to an open cell chamber (2 mL)

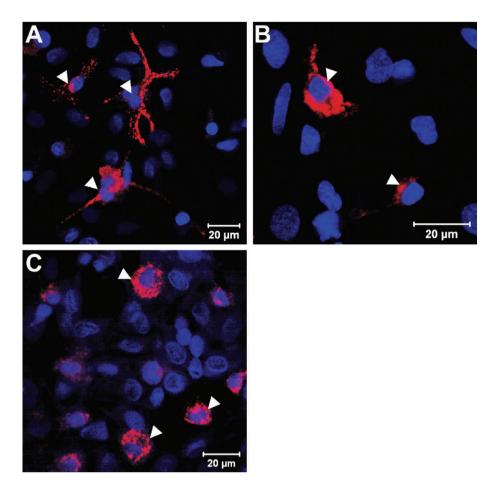


Figure 1

Basic microglial phenotypes of the astroglial co-culture system used in this study. Primary astrocytes were co-cultured with either 5% (M5) or 30% (M30) microglial cells. Figure 1 represent fluorescence immunocytochemistry of the microglia-specific protein ED1 in combination with DAPI counterstaining to visualize astrocytic and microglial nuclei, for quantification and review of microglial activation in accordance to each individual experiment. Immunocytochemistry allows classification of the following different microglial phenotypes: resting ramified type (A), intermediate (B) and activated, round phagocytic type (C). A and B: M5 microglial fraction. C: M30 microglial fraction.

mounted on a fixed-stage microscope and continuously superfused at room temperature with artificial cerebrospinal fluid (ACSF). The ACSF contained (in mM): 127 NaCl, 2 KCl, 0.9 NaH₂PO₄, 11 glucose, 1 MgSo4, 1 CaCl₂, 26 NaHCO₃. To maintain the pH of 7.4, the external solution was continuously superfused with carbogen gas (5% CO₂/95% O₂). The internal solution of the recording pipette was as follows (mM): 130 K-gluconate, 2 Na-G-gluconate, 20 HEPES, 4 MgCl₂, 4 Na2ATP, 0.4 NaGTP and 5 EGTA. pH was adjusted to pH 7.3 and the final solution was filtered through 0.22 μm filters (Millipore Corp., Billerica, MA, USA).

Patch pipettes were pulled from borosilicate glass capillaries (code 7056; Hugo Sachs Elektronik/ Harvard Apparatus, March-Hugstetten, Germany) with a vertical puller (PIP5; HEKA, Lambrecht, Germany). Patch resistance was in the range $5-8~\mathrm{M}\Omega$. Currents from astrocytes were recorded in

the voltage clamp mode, amplified and filtered at 5 kHz by an Axopatch 200B amplifier (Axon Instruments, Molecular Devices, Sunnyvale, CA, USA). Data were digitized at 10 kHz sampling rate, displayed, stored and analysed using WinWCP software (Strathclyde; Biologic, Knoxville, TN, USA). A 16 bit analogue to digital converter (BNC 2110 connected to Ni-PCi 6229, National Instruments; Munich, Germany) was used to digitize the signals.

All recordings were corrected for junction potentials of 10 mV. Leak currents were not subtracted from the records. Capacitance and series resistance compensation (40–50%) were applied to emend voltage clamp control.

To investigate putative inward and outward rectifier currents in astrocytes, we established the following paradigm for the whole cell voltage clamp/patch clamp technique in the voltage clamp mode: the membrane potential was initially held at

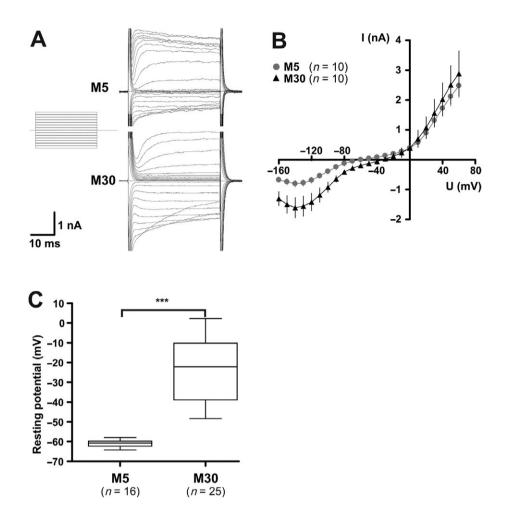


Figure 2

Electrophysiological properties of M5 and M30 co-cultures. (A) Representative examples of holding potential-evoked, voltage-gated membrane currents of M5 and M30 astrocyte co-cultures in whole cell patch clamp recordings. Depolarization steps from -160 to 60 mV (increment = 10 mV) as indicated by the voltage protocol (inset on the left) were used to activate membrane currents. Note that voltage-gated activity was significantly increased in M30 co-cultures. This is also reflected by characteristic current–voltage relations (IV curves) of M5 and M30 cultured astrocytes (B). The main difference between the two conditions is a significant increase of inwardly rectifying currents in the M30-cultured astrocytes at hyperpolarizing holding potentials. (C) Median membrane resting potential (MRP) in M5-cultured astrocytes of -60.77 mV (median; range -57.99 mV to -64.26 mV; n = 16) was in the range of normal astrocytic MRP. In M30 co-cultures, MRP shifted significantly towards depolarization (median -22.40 mV; range +2.04 mV to -48.65 mV; n = 25). ***p < 0.0005. M5, astrocytes co-cultured with an amount of 5% activated microglia; M30, astrocytes co-cultured with an amount of 30% activated microglia.

−60 mV, then consequently processed stepwise from −160 to +60 mV, with increments of 10 mV and step durations of 50 ms. The interval between sweeps was 1000 ms (Figure 2B). Currents for the establishment of current–voltage relation plots were measured between the 47th and 49th ms of the 50 ms lasting holding potential step evoked by the voltage clamp protocol. Membrane resting potentials were measured in the current clamp mode with the holding current clamped to 0 pA.

Statistical comparisons of the data were performed using a Mann–Whitney *U*-test to evaluate significance between two group means. Analysis of variance was used for multiple groups. The significance of difference between median of the astroglial

MRP was tested using the Mann–Whitney test (one-tailed) and displayed in box plots. Input resistances of the different groups are presented in Table 1 as the mean \pm standard error of the mean (SEM). Differences were considered significant at P < 0.05.

Drug application

To match the serum concentrations found in successfully treated patients after 4 weeks of LEV administration (Grim *et al.*, 2003), cultured astrocytes were incubated with 50 µg LEV for 24 h (5% CO2, 95% air atmosphere at 37°C and nearly 100% relative humidity) prior to electrophysiological recordings. We chose this long incubation period in order to make this *in vitro* approach comparable

 Table 1

 Input resistance of different groups

out resistance (M Ω)
9 ± 15.4 (n = 16)
8 ± 8.6 (n = 25)*
7 ± 20.0 (n = 16)
$3 \pm 8.1 \ (n = 19)^{\dagger}$
$5 \pm 10.7 (n = 10)$
$2 \pm 15.8 (n = 12)^{\#}$

*P < 0.005, signficantly different from values in M5 cultures.

M5, astrocytes co-cultured with an amount of 5% activated microglia; M30, astrocytes co-cultured with an amount of 30% activated microglia.

with the prophylactic application of LEV in patients with chronic epilepsy. IL-1 β (R&D Systems, Minneapolis, MN, USA) was applied at a concentration of 500 U·mL $^{-1}$ to the primary M5 co-cultures for 2 h. In a second series of experiments, M5 co-cultures following treatment with 50 $\mu g \cdot m L^{-1}$ LEV for 22 h received an additional incubation with IL-1 β (500 U·mL $^{-1}$) for 2 h. Co-cultures were also incubated for 24 h with 10 ng TGF β 1 mL $^{-1}$ (R&D Sytems) prior to the experiments to mimic a possible anti-inflammatory effect of LEV.

Biological activity of TGF β 1 was blocked by 400 ng·mL⁻¹ anti-TGF β 1 antibody (R&D Systems) before the electrophysiological recordings. In case of co-incubations with LEV, the antibody was applied 1 h prior to the LEV treatment of the co-culture.

ELISA

TGFβ1 levels in cell culture supernatants (M5, M30, M5 + LEV, M30 + LEV) were quantified by Sandwich-ELISA (Promega, Madison, WI, USA) according to the instructions of the TGFβ1 E_{max}^{\otimes} ImmunoAssay System (Promega, Madison, MI, USA). Optical density of each well was determined by using a microplate reader (Bio-Rad 550, Hercules, CA, USA) set to 450 nm.

TGF β 1 concentration of the supernatants was calculated by normalized standard twice-diluted series. Each individual sample was determined in triplicate. Values are displayed as mean \pm SEM. Significance of differences between untreated and with LEV incubated co-cultures were tested using the Mann–Whitney test (GraphPad Software, San Diego, CA, USA).

Measurement of pHi

To analyse changes of pHi, astroglial cell cultures were loaded with the pH sensitive fluorescent

indicator 2',7-bis(2-carboxyethyl)-5(6)-carboxyfluo rescein-acetoxymethyl ester (BCECF-AM, 0.5-1.0 µM; Molecular Probes). Measurements were carried out using a 60× water-immersion objective (Olympus, Hamburg, Germany). Cells were illuminated with alternating light (440 and 490 nm) provided by a halogen lamp and a computer-operated filter wheel (Sutter Instruments, Novato, CA, USA). Light of both wavelengths was dimmed by an appropriate neutral density filter to obtain a BCECF excitation ratio 440/490 of about 1.0 at pH 7.0. Fluorescence images were captured every 20 s by an intensified CCD camera (PTI, Surbiton, Surrey, UK). Background correction and image processing were performed with a Copy Number Analysis with Regression and Tree System (Dr O. Ahrens, Bargteheide, Germany). At the end of each experiment, the ratio 440/490 was calibrated by a standard curve that was obtained by the in vitro calibration method (Boyarsky et al., 1996) adapted to water-immersion optics.

After transfer to the optical recording chamber, astroglial cell cultures were superfused with CO₂/ HCO₃-buffered solution for at least 20 min to remove free dye. Excitation light was reduced to a minimum to enable optical recordings of up to 3 h. The optical plane was controlled throughout the experiments. Care was taken to apply exactly the same dose of NH₄Cl to make pHi regulation curves comparable. The amplitude of the acidotic peak (ΔpHi) was determined from the difference between baseline pHi (averaged from three values immediately before wash-in of ammonium) and acidotic peak pHi averaged from three consecutive values including the maximum value. The pHi recovery rate ($\Delta pHi/min$) was estimated from the slope of the pHi increase subsequent to intracellular acidification. Data points from a 10 min interval starting at the acid peak were linearly extrapolated on the basis of a least-square regression fit. This slope offers a relative measure for the net acid extrusion (Schwiening and Boron, 1994).

Data analysis of pHi

All data were expressed as mean \pm SD. In experiments where ammonium prepulses were used to study pHi regulation, a pHi recovery rate was defined, calculated on the basis of least-squares regression fit to data points after converting ratio recovery 440/490 values to pHi values. The data points for the recovery rate were collected 10 min after the acid peak.

The t-test for paired samples was used to compare differences in pHi recovery rates. Differences were considered significant when P < 0.05 (SPSS 11.0, SPSS Inc., Chicago, IL, USA).

 $^{^{\}dagger}P$ < 0.005, significant effect of levetiracetam (LEV).

 $^{^{\#}}P < 0.05$, significant effect of incubation with TGF β 1.

Materials

LEV was a kind gift from UCB Pharma.

Results

Morphological characteristics

Fluorescent immunocytochemistry allowed the classification of co-cultured microglia as resting ramified (RRT; Figure 1A), intermediate (INT; Figure 1B) and activated, round phagocytic (RPT; Figure 1C) phenotypes. The microglial phenotypes could easily be detected and characterized with the immunolabelling approach. The RRT microglia possessed relatively small cell bodies (5-10 µm) with only a small perinuclear and submembrane cytoplasmic rim, and thin branching processes, which were longer than the diameter of the cell body (Figure 1A). The activated RPT form was characterized by rare short processes, a large cellular diameter and several cytoplasmic vacuoles (Figure 1C), while the INT microglia possessed only some thick pseudopodia longer than the diameter of the cell body, and a perinuclear cytoplasmic rim containing only a few vesicles and vacuoles (Figure 1B) (Booth and Thomas, 1991; Slepko and Levi, 1996). Specifically, the degree of microglial activation within the M5 co-culture condition in Figure 1A is shifted towards the RRT and INT types. This is in contrast to co-cultures derived from the M30 condition (Figure 1C), dominated by the RPT type (Faustmann et al., 2003).

Voltage-gated membrane current responses of co-cultured astrocytes

To investigate the effect of LEV on astrocytes, we used co-cultures with either 5% or 30% (M5, M30) microglial fractions (according to Faustmann et al., 2003; Hinkerohe et al., 2005; Haghikia et al., 2008). The M5 condition was considered as an inflammation-free environment of the astrocytes and thus served as control. Stepwise depolarization of the holding potential from -160 to 60 mV (increment = 10 mV; duration = 50 ms) evoked characteristic voltage-gated membrane current responses in both M5 and M30 cultured astrocytes (Figure 2A,B). The difference in the evoked membrane current responses of the cultured astrocytes was a major increase in inwardly rectifying currents in M30 cultured astrocytes at hyperpolarized holding potentials between -70 and -160 mV (Figure 2B). This rectification differed significantly from the M5 condition between -120 and -100 mV (P < 0.05), and between -100 and -70 mV (P < 0.005). At holding potentials positive to -40 mV, a tendency for an

increase in voltage-gated inward currents was observed, which did not reach statistical significance. Under the M5 conditions, astrocytes were characterized by a median of MRP of about –60 mV (Figure 2C), corresponding to previous findings (Hinkerohe *et al.*, 2005). A significant depolarization of the MRP was measured after co-culturing astrocytes with 30% microglia (M30; Figure 2C).

LEV treatment exerted a marked effect on M30 astrocytic membrane currents when evoked by stepwise depolarization of the holding potential (Figure 3A). This phenomenon is displayed by a general increase in hyperpolarization-evoked currents (arrows in Figure 3A). This finding was further corroborated by the current-voltage IV-relation plot in Figure 3C. Here, a marked increase in inward current rectification was observed for LEV-treated M30 co-cultured astrocytes due to hyperpolarization between -100 and -160 mV. Following holding potential depolarization positive to -40 mV, the membrane current response of the M30 co-cultured astrocytes was characterized by prominent outward rectification. Significant increases in the membrane current responses of LEV-treated cells under inflammatory conditions could be observed between -20 and 20 mV (P<0.005 for -20 mV to 0 mV; P<0.05 for 10 mV and 20 mV), indicating a probable potentiation of outward currents. In contrast, LEV-pretreated M5 astrocytes presented only slight changes in their voltage-current relations (Figure 3B,D).

As already indicated in the IV relations, LEV treatment of M30 co-cultured astrocytes shifted the astrocytic MRPs towards physiological levels (Figure 3E), when compared with the untreated M30 group. The MRPs of LEV-treated M30 co-cultured astrocytes were comparable with resting potentials in M5 control cultures (Figure 3F). Note that the LEV treatment of M5 co-cultures did not affect their MRP.

LEV restores IL-1β-mediated MRP depolarization to physiological levels

The inflammatory condition provoked by incubating M5 astrocytes with IL-1 β (500 U·mL⁻¹, for 2 h; Dinarello, 1990; Hinkerohe *et al.*, 2005) revealed significant membrane current alterations compared with the control conditions (M5, Figure 4A) in the range between –110 and –70 mV, and between –50 and –40 mV (P < 0.05 for –110, –100 and –40 mV; P < 0.005 for –80 mV, –70 and –50 mV; P < 0.0005 for –90 mV). In the presence of IL-1 β , M5 astrocytes increased their evoked inward rectifying membrane currents at hyperpolarized holding potentials (–80 to –160 mV). The depolarization-driven, inward current responses elicited at holding potentials positive to –10 mV showed a trend towards increase (Figure 4A). At holding potentials of 50 and 60 mV,

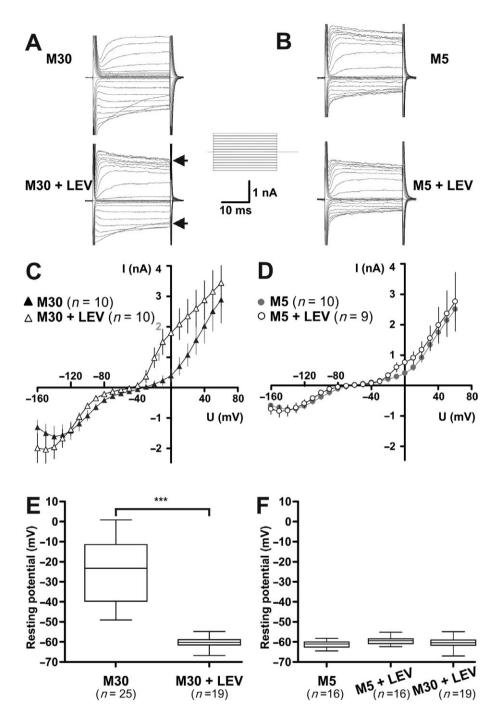


Figure 3

Effects of levetiracetam (LEV) on electrophysiological properties of M5 and M30 co-cultures. Characteristic examples of single cell recordings from M30 and M5 co-cultured astrocytes are shown in A and B respectively. Equivalent recordings from astrocytes following 24 h pre-incubation with 50 μg·mL⁻¹ LEV (M30 + LEV, M5 + LEV) are displayed in the lower traces. Arrows in (A) indicate the increase in hyperpolarization-evoked membrane currents and a regression of voltage-gated membrane currents at highly depolarizing holding potentials in the M30 + LEV-treated group. This is in contrast to the M5 co-cultured astrocytes in (B) which show only minor changes in evoked membrane currents after incubation with LEV. Comparison of the state specific IV relations in (C) clearly demonstrates that LEV pre-incubation exerts a significant effect on the in- and outwardly rectifying component of the membrane current in M30 co-cultured astrocytes. This is particularly displayed in the significant shift of the cell membrane resting potentials (MRPs) towards hyperpolarization (E). Only minor changes were observed in the IV relations of M5 co-cultured astrocytes as depicted in (D). (F) The MRPs of M5 + LEV (n = 16) and M30 + LEV cultures (n = 19) did not differ (P > 0.05). ***P < 0.0005. M5, astrocytes co-cultured with an amount of 5% activated microglia; M30, astrocytes co-cultured with an amount of 30% activated microglia.

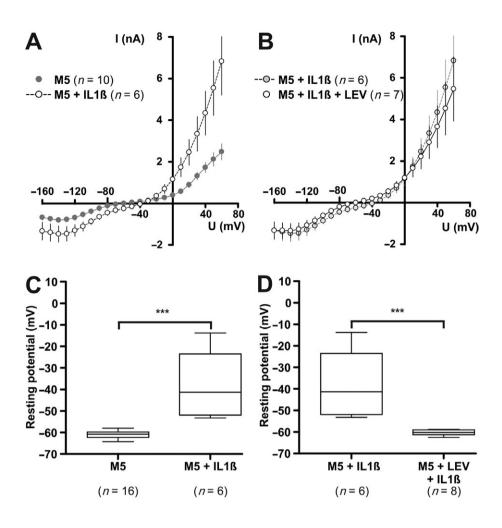


Figure 4

The pro-inflammatory cytokine IL-1 β (500 U·mL⁻¹ for 2 h) induces an acute inflammatory state by activation of the microglial fraction in the M5 co-cultures. As observed in the M30 co-cultures, a significant increase in membrane currents could be detected in the M5 co-cultures under both hyper- and depolarization of the cells (A). This effect was accompanied by a subsequent significant depolarization of the membrane resting potentials (MRPs) (C). MRPs of levetiracetam (LEV) pretreated, and IL-1 β -stimulated M5 astrocytes exhibited a significant shift back towards values of the untreated (physiological) M5 co-cultures (D), which is also reflected by the IV relation in (B). ***P < 0.0005. M5, astrocytes co-cultured with an amount of 5% activated microglia; M30, astrocytes co-cultured with an amount of 30% activated microglia.

membrane currents were significantly increased in the inflammatory condition (P < 0.05 for 50 and 60 mV; Figure 4A). In addition, M5 astrocytes stimulated with IL-1 β showed a significant shift of their MRPs (Figure 4C) to more depolarized levels. For testing the restoring effect of LEV on these altered currents, we compared the former group (M5 + IL-1 β) with a LEV-pretreated group of IL-1 β -stimulated M5 astrocytes (Figure 4B). Whereas minor effects were observed with regard to the astrocytic membrane current amplitudes (Figure 4B), the MRPs were markedly shifted towards more negative values after LEV pretreatment (Figure 4D). These data show that one of the major effects of LEV is to prevent the cell from MRP depolarization induced by IL-1 β .

LEV and TGF β 1 induce comparable effects in astrocytes

As illustrated in Figure 5A, the courses of the IV relations of TGF β 1 and LEV-treated M30 co-cultured astrocytes are mostly congruent. With respect to the shift of resting potentials towards more negative potentials, LEV and TGF β 1 treatment of M30 co-cultures induced comparable changes (Figure 5C). The IV relations in M5 astrocytes were also unaffected by treatment with LEV or TGF β 1 (Figure 5B). A comparison of LEV or TGF β 1-treated M5 astrocytes with the M5 control group revealed no differences in MRPs. These findings were similar to those of LEV and TGF β 1 on the differently conditioned co-cultures.

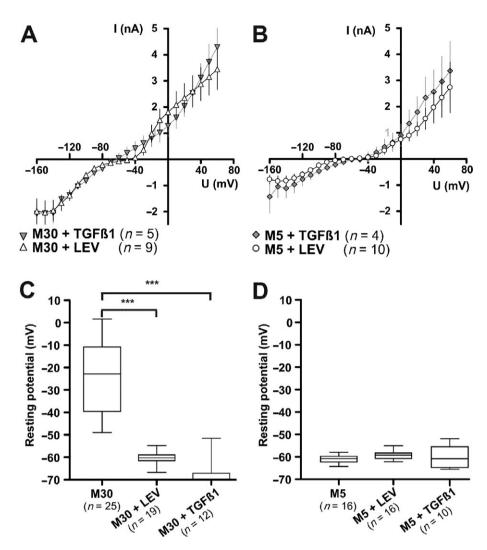
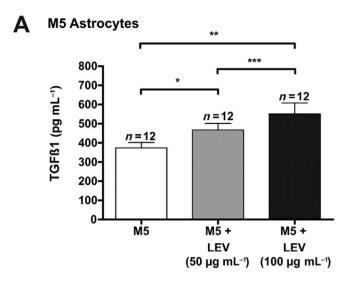
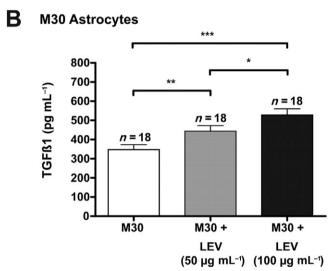


Figure 5

The effects of levetiracetam (LEV) treatment and the anti-inflammatory cytokine TGF β 1 on the IV-relations are similar. Voltage–current-relations of TGF β 1 and LEV treated groups were not affected by the co-culturing conditions: M30 (A) or M5 (B). This is best shown in the restoring shift of the membrane resting potentials (MRPs) in (C), where a comparison of the M30 + LEV and M30 + TGF β 1-treated group with the M30 only co-cultures is shown. Both M30 groups reveal significant shifts towards more negative resting potentials, comparable with those of the M5 control condition (see also D). (D) The M5 samples did not differ in their MRPs, indicating that LEV, as well as TGF β 1, was without effect on astroglia during resting (inflammation-free) conditions. ***P < 0.0005. M5, astrocytes co-cultured with an amount of 30% activated microglia.

LEV incubation alters the TGFβ1 concentration in M30 and M5 astroglial co-cultures


To address the question of whether treatment with LEV affected concentrations of $TGF\beta1$ in the co-cultures, we used two concentrations of LEV (50 or $100~\mu g\cdot mL^{-1}$). As shown in Figure 6, $TGF\beta1$ concentrations were increased concentration-dependently by LEV in M5 (Figure 6A), as well as in M30 (Figure 6B) supernatants. Untreated M5 samples showed similar $TGF-\beta1$ concentrations as in M30 co-cultures.


To strengthen the correlation between the effects of LEV on membrane currents and MRPs, and the

TGF β 1 concentration in M30 co-cultures, we used an antibody of TGF β 1, which was either applied 1 h in advance of LEV incubation, or in addition to the 24 h lasting LEV incubation. If LEV was effective through increasing TGF β 1 secretion, neutralizing TGF β 1 with the appropriate antibody should prevent the effects of LEV on the IV relations and on the restoration of MRP (Tsang *et al.*, 1995).

Whole-cell patch clamp electrophysiology revealed equivalent effects on the IV-relations of M30 only and LEV-treated M30 co-cultured astrocytes after neutralization of TGF β 1 (Figure 7A). The IV relations of both antibody-treated co-cultures were mostly overlapping. In comparison with

Figure 6

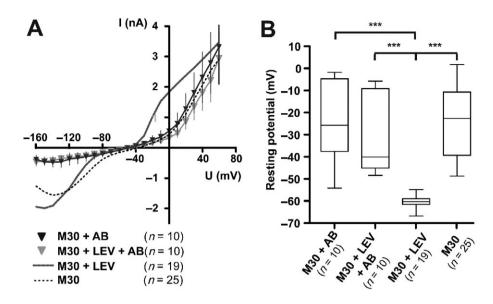
ELISA analyses of TGF β 1 in M5 (A) and in M30 (B) co-cultures following incubation with different concentrations of levetiracetam (LEV). LEV application causes a concentration-dependent increase in TGF β 1 in the co-culture system. Although electrophysiological recordings did not reveal functional changes in LEV or TGF β 1-treated M5 groups (see Figures 3D and 5D), it is evident that the levels of TGF β 1 were increased concentration dependently by LEV (A). A similar dose-dependent increase in TGF β 1 concentrations can be obtained from the M30 co-cultures (B). In contrast to the M5 condition, M30 astrocytes physiologically respond to elevated TGF β 1 levels (see Figure 5C). A: *P < 0.05; **P < 0.005; ***P < 0.0969. B: *P < 0.05; **P < 0.005; **P < 0.005; ***P < 0.005; **

untreated cultures, a marked decrease in membrane currents at holding potentials negative to -50 mV occurs. At holding potentials positive to -50 mV, current courses of the antibody treated M30 and M30 + LEV astrocytes were mostly aligned (Figure 7A). After TGF β 1 neutralization, LEV-treated M30 astrocytes and M30 non-treated co-cultured

astrocytes revealed similarly depolarized MRPs (P > 0.05). In contrast, strongly significant differences were found for all three (P < 0.0005), when compared with LEV-pretreated M30 co-cultured astrocytes.

The correlation between LEV and the presence of TGFβ1 was also reflected in the microglial phenotypes found in the co-cultures. Quantification of the fractions of the activated, round shaped, microglial phenotype (RPT; for morphology, see Figure 1C) revealed the highest portion of RPT microglia in M30 co-cultures, followed by the antibody-treated M30 only. Astrocytes from the LEV treated group contained the lowest proportion of RPT microglia. Assay of the RRT (data not shown) in the same LEV group underlined the shift in microglial activation towards this ramified type. The INT microglial fraction remained mostly unchanged under all conditions studied here.

Effects of LEV on pHi in the astroglial co-culture model


LEV (25–50 μM) was unable to influence steady-state pHi of BCECF-AM-loaded astroglial cell cultures in the M5 co-cultures (n=21, from 11 astroglial cell cultures). The mean steady-state pHi amounted to 7.04 \pm 0.16. Acute exposure to LEV (25–50 μM) for 20–30 min had no effect on steady-state pHi (n=14); also a prolonged wash-in (>50 min) and/or increasing the LEV concentration to 100 μM did not change the pHi (n=7) (data not shown).

Potential effects of LEV (25–50 μ M) on buffer capacity and pHi regulation were also tested by applying ammonium prepulses in the absence and presence of LEV (n=14). Neither the size of the acid peak [Δ pHi: 0.19 \pm 0.04 (control) vs. 0.20 \pm 0.03 (LEV)], nor pHi regulation [Δ pHi/min: 0.009 \pm 0.002 (control) vs. 0.0086 \pm 0.003 (LEV)] was influenced by LEV.

LEV $(25-50 \,\mu\text{M})$ also failed to alter the steady-state pHi within 20–30 min of application in IL-1 β stimulated astroglial cell cultures (n=7). Again, a prolonged wash-in (>50 min) and/or raising the concentration to 100 μ M did not alter pHi (n=7), excluding the possibility of a pH-dependence of the observed findings.

Discussion and conclusions

An anti-inflammatory effect of the anti-convulsive drug LEV in non-neuronal tissue was first described by Kim *et al.* (2007) in a macrophage culture model after lipopolysaccharide-induced inflammation. Haghikia *et al.* (2008) showed a LEV-mediated

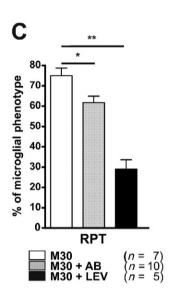


Figure 7

Antibody inhibition of TGF β 1 in M30 astrocytes and levetiracetam (LEV) pretreated M30 co-cultures. (A) Depicts the effect of antibody (AB) treatment on IV relations. Independent of the treatment (AB only; LEV + AB), M30 co-cultures exhibit similar IV correlations characterized by a lack of hyperpolarization-driven membrane current at holding potentials \leq 50 mV. The black dashed line indicates the course of currents under LEV-only treatment; the grey dotted line represents the currents of the completely untreated M30 condition for general comparison. (B) Antibody inhibition of TGF β 1 is reflected in the marked shift of resting potential of AB treated groups towards positive values, compared with the LEV-only treated M30 group. (C) Quantification of the fraction of activated round phagocytic type (RPT) revealed the highest amount of RPT microglia in M30 co-cultures, whereas the level of microglial activation within the LEV group is significantly reduced. B: ***P < 0.0005; C: **P < 0.005; *P < 0.05. M30, astrocytes co-cultured with an amount of 30% activated microglia.

reconstitution of impaired astroglial gap junction coupling, along with repolarization of MRP under inflammatory conditions in the microglial/astrocytes co-culture model. In this study, we followed this line of an anti-inflammatory effect of LEV, which can be considered a functional effect of its anti-convulsant actions.

In a basic astroglial/microglial co-culture model, we first provoked a pro-inflammatory status with a

fraction of 30% microglia as introduced previously (Hinkerohe *et al.*, 2005; Haghikia *et al.*, 2008), enabling us to demonstrate robust effects of LEV on the evoked membrane current response. At this point it has to be mentioned that currents through gap junctions also contribute to the passive membrane conductance of astrocytes in syncytitial distributions (Blomstrand *et al.*, 2004; Haghikia *et al.*, 2008; Seifert *et al.*, 2009). These currents cannot be

fully excluded from affecting the quality of voltage clamp control. Detailed information about the individual astrocyte's membrane current generation mechanisms can most probably be attained in isolated cell recordings (Steinhauser *et al.*, 1990; 1994; Seifert *et al.*, 2009).

Besides an increase in voltage-gated currents, a significant shift of the depolarized astrocytic MRPs towards values of the M5 control condition could be observed, which confirmed our previous observations (Hinkerohe *et al.*, 2005; Haghikia *et al.*, 2008). The voltage–current relations of LEV-treated M30 astrocytes suggest a significant effect on the outward rectifier activity, voltage-gated inward current generation and subsequent rectification.

Rectifier activity, basically consisting of K⁺ current, is necessary to keep the cellular resting potential in the physiological range during strong hyperand de-polarization (Sontheimer, 1994). As such, this current may compensate strong depolarization, which occurs under inflammatory conditions due to increased Ca²⁺ and via Na⁺-influx during cellular activation (Bevan et al., 1987; Steinhauser et al., 1994; Kressin et al., 1995). Under inflammatory conditions, activated microglia are capable of producing pro-inflammatory cytokines (Kloss et al., 1997; Ledeboer et al., 2000), including IL-1B (Pearson et al., 1999), which leads to changes in astrocytic MRP and gap junction coupling (Hinkerohe et al., 2005). In our co-culture model, an increased level of activated microglia in the M30 co-cultures is most likely responsible for the presence of sixfold elevated levels of IL-1β (Haghikia *et al.*, 2008). IL-1β elicits immune responses by activation of microglia and lymphocytes (Dinarello, 1990). In a previous study, we demonstrated that incubation with IL-1β induced an acute inflammatory state in M5 co-cultured astrocytes, which was reversed by an application of known anti-inflammatory mediators such as IFN-β and TGFβ1 (Hinkerohe et al., 2005). Under these conditions, astrocytes change their structural and functional phenotypes (Schilling et al., 2001), which can be regarded as a switch from a resident state towards a reactive and ultimately gliotic state as seen in many primary and secondary inflammatory disorders of the CNS (Kim et al., 2010). Our present findings have provided substantial evidence for an antiinflammatory effect of LEV on the astrocytic MRPs.

In neurons, LEV modulates the MRP, via the protein kinase A-mediated phosphorylation and activation of ROMK1 potassium channels (K_{IR} 1.1a; channel nomenclature follows Alexander *et al.*, 2009) (Lee *et al.*, 2008). The resting potential, as well as some of the K^+ buffering mechanisms of astrocytes, is established through the activity of inwardly rectifying K^+ channels (K_{IR}), which account for most

of the transmembrane current in the hyperpolarizing site of the current-voltage relationship (Sontheimer, 1994). These channels are characterized by a large open probability close to and below the astrocytic resting potential (Kuffler et al., 1966; Dennis and Gerschenfeld, 1969; Ransom and Goldring, 1973), while open probability is near zero at more depolarized potentials. Defects of the glial inward rectifier may be one possible factor in the development of seizure activity (Bordey and Sontheimer 1998). We found that currents elicited in the K_{IR} operation range are increased under inflammatory conditions (M30 and M5; IL1-β by tendency). This observation indicates a mechanism for the cells to restore the membrane resting potential more efficiently. There is evidence that LEV-induced restoration of resting potentials is not only restricted to an increase in membrane currents of the single cell, but also depends on the integrity of the gap junctional coupling properties in the astro-glial syncytium (Haghikia et al., 2008). These, in turn, influence K⁺ homeostasis and subsequent resting potential regulation (Volterra and Meldolesi, 2005). The data suggest that the restoration of the MRP by LEV, elicited in M5 astrocytes after IL1-β-only incubation, was dominated by effects of the AED on the gap junctional coupling properties in the syncythium. During epilepsy, impaired astrocytic K⁺ buffering might be a possible cause of slower K+ clearance from the extracellular space, which in turn would lower seizure threshold and thereby contribute to seizure generation in the neuro-glial complex. LEV would appear to enhance uptake and distribution of K⁺ within the glial network by improving K⁺ channel function and restorating gap junction coupling (Haghikia et al., 2008).

The effects of TGF\u00e31 on MRP in M5 and M30treated astrocytes have already been shown by Hinkerohe et al., (2005) and they were comparable with those of LEV. This similarity allowed us to propose a causal link between LEV treatment and subsequently augmented secretion of this anti-inflammatory cytokine. To further explore similarities between LEV and TGFβ1 effects, we studied the direct influence of a 24 h incubation with 10 ng·mL⁻¹ TGFβ1 on the IV relations of M30 co-cultured astrocytes and compared these results with those from the LEV-treated M30 group. The same experimental conditions were tested on M5 co-cultured astrocytes. The results of LEV incubations of M30 and M5 astrocytes strongly resemble the outcome of TGF\$1 treatments as both treatments provide comparable effects on astrocytic membrane currents and resting potentials. These data imply a facilitating effect of TGF\$1 on the hyperpolarization-driven current response of M30 astrocytes under pro-inflammatory conditions,

which can be blocked by antibody neutralization. This possibility was substantiated by the ELISA analysis, which indicated a LEV-dependent increase in TGFβ1 concentrations in the co-cultures. The LEVdependent increase in TGF\beta1 secretion in M30 astrocytes clearly underscores the close correlation between LEV treatment and TGF\u00e31 action. This conclusion is augmented by the MRP distributions of the differently treated groups (Figure 7B). We assume that LEV augments TGF\$1 secretion and that its autocrine/paracrine effect on astrocytic resting potentials is responsible for the shift towards physiological levels, which ultimately may contribute to reduced excitability. A recent work by Cacheaux et al., (2009) showed involvement of TGFβassociated epileptogenesis in vitro, involving the measurement of epileptiform neuronal activity in a brain slice model which mimics trauma-induced acute epilepsy. However, these results would appear to contradict the anti-inflammatory effect observed in our model following LEV-induced TGF\$1 enhancement. The induction of conflicting pathways in response to TGF\$\beta\$ have already been described in the context of autoimmune disorders, in which the combined effect of TGFB with IL-6 resulted in an inflammatory polarization of T helper cell subsets (TH17), in clear contrast to the antiinflammatory effect exerted by TGFB alone (Korn et al., 2007). Furthermore, the TGFβ concentration used by this work is roughly 30-fold higher than the concentrations we measured after LEV treatment.

Our study was performed using co-cultures model to gain information about LEV effects and interactions in the astro-glial syncytium. This artificial neuron-free environment might be one reason for the slightly depolarized MRPs of M5 co-cultured astrocytes, compared with the K⁺ equilibrium potential of the solutions or with the MRP of cortical astrocytes in adult rats in vivo (Mishima and Hirase, 2010). In addition, it has to be taken into account that cellular electrophysiological properties in this system are strongly influenced by the developmental state of the astrocytes after primary culture preparation, which particularly affects the expression of K⁺ channels (Kressin et al., 1995; Kafitz et al., 2008). This indicates that astrocytes used in this system should not be regarded as mature.

A further outcome of this study is the stability of astrocytic intracellular pH which was not found to be modulated under control and inflammatory conditions. The rationale for performing pHi measurements was to exclude pH effects as a possible explanation for the described phenomena, as astrocytes exhibit a number of pH regulatory mechanisms including Na⁺ -dependent Cl⁻/HCO3⁻ exchange (Shrode and Putnam, 1994). Likewise, pHi

modulation by LEV, through inhibition of the Na+dependent Cl⁻/HCO3⁻ exchange, has been described in adult hippocampal CA3 neurons of the guinea pig (Leniger et al., 2004). For nearly all events related to pH changes in nervous tissue, the presence of CO₂ and HCO₃⁻ is critical (Chesler, 1990). For neural regulation of the pH, HCO₃⁻ determines the buffering capacity in brain tissues to a large extent. In neurons, HCO₃- flows through GABA_A receptor channels and thereby modifies the inhibitory synaptic potentials. Furthermore, the presence of HCO₃⁻ stimulates the powerful glial electrogenic Na⁺–HCO₃⁻ co-transporter and other carriers such as Na⁺-dependent and Na⁺-independent Cl⁻/HCO₃⁻ exchanger (Deitmer and Rose, 1996). A possible explanation for the pH stability we have found might be the steady-state counterbalancing of astrocytes against pH changes via strong, endogenous buffering capacities, as has been described in detail by Boron (2001; 2004).

As a general consequence of our findings, the anti-convulsant drug LEV might be regarded as a prototype for future anti-epileptic therapeutic approaches, where not only modification of neuronal excitability is taken into account, but also aspects of an inflammatory, glia-induced, component of epileptogenesis.

Acknowledgements

The authors thank Sabine Schreiber-Minjoli, Jennifer Willms and Hans-Werner Habbes for their excellent technical assistance and Andreas Schoebel for cell culture management. This research was supported by grants from the Medical Faculty, Ruhr University Bochum, Germany.

Conflicts of interest

No conflicts of interest are stated.

References

Alexander SPH, Mathie A, Peters JA (2009). Guide to receptors and channels (GRAC). 4th edn. Br J Pharmacol 158 (Suppl. 1): S1–S254.

Avignone E, Ulmann L, Levavasseur F, Rassendren F, Audinat E (2008). Status epilepticus induces a particular microglial activation state characterized by enhanced purinergic signaling. J Neurosci 28: 9133–9144.

Bauer B, Hartz AM, Miller DS (2007). Tumor necrosis factor alpha and endothelin-1 increase P-glycoprotein expression and transport activity at the blood-brain barrier. Mol Pharmacol 71: 667–675.

Bevan S, Lindsay RM, Perkins MN, Raff MC (1987). Voltage-gated ionic channels in rat cultured astrocytes, reactive astrocytes and an astrocyte-oligodendrocyte progenitor cell. J Physiol (Paris) 82: 327–335.

Blomstrand F, Venance L, Siren AL, Ezan P, Hanse E, Glowinski J *et al.* (2004). Endothelins regulate astrocyte gap junctions in rat hippocampal slices. Eur J Neurosci 19: 1005–1015.

Booth PL, Thomas WE (1991). Evidence for motility and pinocytosis in ramified microglia in tissue culture. Brain Res 548: 163–171.

Bordey A, Sontheimer H (1998). Properties of human glial cells associated with epileptic seizure foci. Epilepsy Res 32: 286–303.

Boron WF (2001). Sodium-coupled bicarbonate transporters. JOP 2: 176–181.

Boron WF (2004). Regulation of intracellular pH. Adv Physiol Educ 28: 160–179.

Boyarsky G, Hanssen C, Clyne LA (1996). Inadequacy of high K+/nigericin for calibrating BCECF. II. Intracellular pH dependence of the correction. Am J Physiol 271: C1146–C1156.

Cacheaux LP, Ivens S, David Y, Lakhter AJ, Bar-Klein G, Shapira M *et al.* (2009). Transcriptome profiling reveals TGF-beta signaling involvement in epileptogenesis. J Neurosci 29: 8927–8935.

Chesler M (1990). The regulation and modulation of pH in the nervous system. Prog Neurobiol 34: 401–427.

Choi S, Friedman WJ (2009). Inflammatory cytokines IL-1beta and TNF-alpha regulate p75NTR expression in CNS neurons and astrocytes by distinct cell-type-specific signalling mechanisms. ASN Neuro 1: doi:10.1042/AN20090009.

De Simoni MG, Perego C, Ravizza T, Moneta D, Conti M, Marchesi F *et al.* (2000). Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci 12: 2623–2633.

Deitmer JW, Rose CR (1996). pH regulation and proton signaling by glial cells. Prog Neurobiol 48: 73–103.

Dennis MJ, Gerschenfeld HM (1969). Some physiological properties of identified mammalian neuroglial cells. J Physiol 203: 211–222.

Dermietzel R, Hertberg EL, Kessler JA, Spray DC (1991). Gap junctions between cultured astrocytes: immunocytochemical, molecular, and electrophysiological analysis. J Neurosci 11: 1421–1432.

Dijkstra CD, Dopp EA, Joling P, Kraal G (1985). The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in rat recognized by monoclonal antibodies ED1, ED2 and ED3. Adv Exp Med Biol 186: 409–419.

Dinarello CA (1990). The pathophysiology of the pro-inflammatory cytokines. Biotherapy 2: 189–191.

Faustmann PM, Haase CG, Romberg S, Hinkerohe D, Szlachta D, Smikalla D *et al.* (2003). Microglia activation influences dye coupling and Cx43 expression of the astrocytic network. Glia 42: 101–108.

Giaume C, Fromaget C, el Aoumari A, Cordier J, Glowinski J, Gros D (1991). Gap junctions in cultured astrocytes: single-channel currents and characterization of channel-forming protein. Neuron 6: 133–143.

Gorji A, Hohling JM, Madeja M, Straub H, Kohling R, Tuxhorn I *et al.* (2002). Effect of levetiracetam on epileptiform discharges in human neocortical slices. Epilepsia 43: 1480–1487.

Gorter JA, van Vliet EA, Aronica E, Breit T, Rauwerda H, Lopes da Silva FH *et al.* (2006). Potential new antiepileptogenic targets indicated by microarray analysis in a rat model for temporal lobe epilepsy. J Neurosci 26: 11083–11110.

Grim SA, Ryan M, Miles MV, Tang PH, Strawsburg RH, deGrauw TJ *et al.* (2003). Correlation of levetiracetam concentrations between serum and saliva. Ther Drug Monit 25: 61–66.

Gu J, Lynch BA, Anderson D, Klitgaard H, Lu S, Elashoff M *et al.* (2004). The antiepileptic drug levetiracetam selectively modifies kindling-induced alterations in gene expression in the temporal lobe of rats. Eur J Neurosci 19: 334–345.

Haghikia A, Ladage K, Hinkerohe D, Vollmar P, Heupel K, Dermietzel R *et al.* (2008). Implications of anti-inflammatory properties of the anticonvulsant drug levetiracetam in astrocytes. J Neurosci Res 86: 1781–1788.

Hinkerohe D, Smikalla D, Haghikia A, Heupel K, Haase CG, Dermietzel R *et al.* (2005). Effects of cytokines on microglial phenotypes and astroglial coupling in an inflammatory co-culture model. Glia 52: 85–97.

Hinkerohe D, Smikalla D, Schoebel A, Haghikia A, Zoidl G, Haase CG *et al.* (2010). Dexamethasone prevents LPS-induced microglial activation and astroglial impairment in an experimental bacterial meningitis co-culture model. Brain Res 1329: 45–54.

Jabs R, Seifert G, Steinhauser C (2008). Astrocytic function and its alteration in the epileptic brain. Epilepsia 49 (Suppl. 2): 3–12.

Jankowsky JL, Patterson PH (2001). The role of cytokines and growth factors in seizures and their sequelae. Prog Neurobiol 63: 125–149.

Kafitz KW, Meier SD, Stephan J, Rose CR (2008). Developmental profile and properties of sulforhodamine 101-Labeled glial cells in acute brain slices of rat hippocampus. J Neurosci Methods 169: 84–92.

Kim J, Kondratyev A, Gale K (2007). Antiepileptic drug-induced neuronal cell death in the immature brain: effects of carbamazepine, topiramate, and levetiracetam as monotherapy versus polytherapy. J Pharmacol Exp Ther 323: 165–173.

Kim JE, Choi HC, Song HK, Jo SM, Kim DS, Choi SY *et al.* (2010). Levetiracetam inhibits interleukin-1 beta inflammatory responses in the hippocampus and piriform cortex of epileptic rats. Neurosci Lett 471: 94–99.

Kim SU, de Vellis J (2005). Microglia in health and disease. J Neurosci Res 81: 302–313.

Kloss CU, Kreutzberg GW, Raivich G (1997). Proliferation of ramified microglia on an astrocyte monolayer: characterization of stimulatory and inhibitory cytokines. J Neurosci Res 49: 248–254.

Korn T, Bettelli E, Gao W, Awasthi A, Jäger A, Strom TB *et al.* (2007). IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448: 484–487.

Kressin K, Kuprijanova E, Jabs R, Seifert G, Steinhauser C (1995). Developmental regulation of Na+ and K+ conductances in glial cells of mouse hippocampal brain slices. Glia 15: 173–187.

Kuffler SW, Nicholls JG, Orkand RK (1966). Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol 29: 768–787.

Kunzelmann P, Schroder W, Traub O, Steinhauser C, Dermietzel R, Willecke K (1999). Late onset and increasing expression of the gap junction protein connexin30 in adult murine brain and long-term cultured astrocytes. Glia 25: 111–119.

Ledeboer A, Breve JJ, Poole S, Tilders FJ, Van Dam AM (2000). Interleukin-10, interleukin-4, and transforming growth factor-beta differentially regulate lipopolysaccharide-induced production of pro-inflammatory cytokines and nitric oxide in co-cultures of rat astroglial and microglial cells. Glia 30: 134–142.

Lee CH, Lee CY, Tsai TS, Liou HH (2008). PKA-mediated phosphorylation is a novel mechanism for levetiracetam, an antiepileptic drug, activating ROMK1 channels. Biochem Pharmacol 76: 225–235.

Leniger T, Thone J, Bonnet U, Hufnagel A, Bingmann D, Wiemann M (2004). Levetiracetam inhibits Na+-dependent Cl-/HCO3- exchange of adult hippocampal CA3 neurons from guinea-pigs. Br J Pharmacol 142: 1073–1080.

Lukyanetz EA, Shkryl VM, Kostyuk PG (2002). Selective blockade of N-type calcium channels by levetiracetam. Epilepsia 43: 9–18.

Madeja M, Margineanu DG, Gorji A, Siep E, Boerrigter P, Klitgaard H *et al.* (2003). Reduction of voltage-operated potassium currents by levetiracetam: a novel antiepileptic mechanism of action? Neuropharmacology 45: 661–671.

Margineanu DG, Klitgaard H (2003). Levetiracetam has no significant gamma-aminobutyric acid-related effect on paired-pulse interaction in the dentate gyrus of rats. Eur J Pharmacol 466: 255–261.

Meme W, Calvo CF, Froger N, Ezan P, Amigou E, Koulakoff A *et al.* (2006). Pro-inflammatory cytokines released from microglia inhibit gap junctions in astrocytes: potentiation by beta-amyloid. FASEB J 20: 494–496.

Mishima T, Hirase H (2010). In vivo intracellular recording suggests that gray matter astrocytes in mature cerebral cortex and hippocampus are electrophysiologically homogeneous. J Neurosci 30: 3093–3100.

Nelson PT, Soma LA, Lavi E (2002). Microglia in diseases of the central nervous system. Ann Med 34: 491–500.

Pearson VL, Rothwell NJ, Toulmond S (1999). Excitotoxic brain damage in the rat induces interleukin-1beta protein in microglia and astrocytes: correlation with the progression of cell death. Glia 25: 311–323.

Peltola J, Palmio J, Korhonen L, Suhonen J, Miettinen A, Hurme M *et al.* (2000). Interleukin-6 and interleukin-1 receptor antagonist in cerebrospinal fluid from patients with recent tonic-clonic seizures. Epilepsy Res 41: 205–211.

Peltola J, Laaksonen J, Haapala AM, Hurme M, Rainesalo S, Keranen T (2002). Indicators of inflammation after recent tonic-clonic epileptic seizures correlate with plasma interleukin-6 levels. Seizure 11: 44–46.

Pivneva TA (2008). Microglia in normal condition and pathology. Fiziol Zh 54: 81–89.

Polman CH, Dijkstra CD, Sminia T, Koetsier JC (1986). Immunohistological analysis of macrophages in the central nervous system of Lewis rats with acute experimental allergic encephalomyelitis. J Neuroimmunol 11: 215–222.

Ransom BR, Goldring S (1973). Ionic determinants of membrane potential of cells presumed to be glia in cerebral cortex of cat. J Neurophysiol 36: 855–868.

Rao RS, Medhi B, Saikia UN, Arora SK, Toor JS, Khanduja KL *et al.* (2008). Experimentally induced various inflammatory models and seizure: understanding the role of cytokine in rat. Eur Neuropsychopharmacol 18: 760–767.

Retamal MA, Froger N, Palacios-Prado N, Ezan P, Saez PJ, Saez JC *et al.* (2007). Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by pro-inflammatory cytokines released from activated microglia. J Neurosci 27: 13781–13792.

Riazi K, Galic MA, Kuzmiski JB, Ho W, Sharkey KA, Pittman QJ (2008). Microglial activation and TNFalpha production mediate altered CNS excitability following peripheral inflammation. Proc Natl Acad Sci USA 105: 17151–17156.

Rouach N, Avignone E, Meme W, Koulakoff A, Venance L, Blomstrand F *et al.* (2002). Gap junctions and connexin expression in the normal and pathological central nervous system. Biol Cell 94: 457–475.

Schilling T, Nitsch R, Heinemann U, Haas D, Eder C (2001). Astrocyte-released cytokines induce ramification and outward K+ channel expression in microglia via distinct signalling pathways. Eur J Neurosci 14: 463–473.

Schwiening CJ, Boron WF (1994). Regulation of intracellular pH in pyramidal neurones from the rat hippocampus by Na(+)-dependent Cl(-)-HCO3exchange. J Physiol 475: 59-67.

Seifert G, Schilling K, Steinhauser C (2006). Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7: 194–206.

Seifert G, Huttmann K, Binder DK, Hartmann C, Wyczynski A, Neusch C et al. (2009). Analysis of astroglial K+ channel expression in the developing hippocampus reveals a predominant role of the Kir4.1 subunit. J Neurosci 29: 7474–7488.

Shrode LD, Putnam RW (1994). Intracellular pH regulation in primary rat astrocytes and C6 glioma cells. Glia 12: 196-210.

Slepko N, Levi G (1996). Progressive activation of adult microglial cells in vitro. Glia 16: 241-246.

Sontheimer H (1994). Voltage-dependent ion channels in glial cells. Glia 11: 156-172.

Soroceanu L, Manning TJ Jr, Sontheimer H (2001). Reduced expression of connexin-43 and functional gap junction coupling in human gliomas. Glia 33: 107-117.

Steinhauser C, Tennigkeit M, Matthies H, Gundel J (1990). Properties of the fast sodium channels in pyramidal neurones isolated from the CA1 and CA3 areas of the hippocampus of postnatal rats. Pflugers Arch 415: 756-761.

Steinhauser C, Kressin K, Kuprijanova E, Weber M, Seifert G (1994). Properties of voltage-activated Na+ and K+ currents in mouse hippocampal glial cells in situ and after acute isolation from tissue slices. Pflugers Arch 428: 610-620.

Tian GF, Azmi H, Takano T, Xu Q, Peng W, Lin J et al. (2005). An astrocytic basis of epilepsy. Nat Med 11: 973-981.

Tsang ML, Zhou L, Zheng BL, Wenker J, Fransen G, Humphrey J et al. (1995). TGF-β inhibits the mouse IL-4-dependent 3H-thymidine incorporation by HT-2 cells in a dose-dependent manner. Cytokine 7: 389–397.

Turrin NP, Rivest S (2004). Innate immune reaction in response to seizures: implications for the neuropathology associated with epilepsy. Neurobiol Dis 16: 321-334.

Vezzani A, Granata T (2005). Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 46: 1724–1743.

Vezzani A, Conti M, De Luigi A, Ravizza T, Moneta D, Marchesi F et al. (1999). Interleukin-1beta immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: functional evidence for enhancement of electrographic seizures. J Neurosci 19: 5054-5065.

Vezzani A, Moneta D, Conti M, Richichi C, Ravizza T, De Luigi A et al. (2000). Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proc Natl Acad Sci USA 97: 11534-11539.

Vezzani A, Ravizza T, Balosso S, Aronica E (2008). Glia as a source of cytokines: implications for neuronal excitability and survival. Epilepsia 49 (Suppl. 2): 24-32.

Volterra A, Meldolesi J (2005). Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6: 626-640.

Wetherington J. Serrano G. Dingledine R (2008). Astrocytes in the epileptic brain. Neuron 58: 168–178.

Witcher MR, Park YD, Lee MR, Sharma S, Harris KM, Kirov SA (2010). Three-dimensional relationships between perisynaptic astroglia and human hippocampal synapses. Glia 58: 572-587.

Zona C, Niespodziany I, Marchetti C, Klitgaard H, Bernardi G, Margineanu DG (2001). Levetiracetam does not modulate neuronal voltage-gated Na+ and T-type Ca2+ currents. Seizure 10: 279-286.